WEBMATEMATİK MATEMATİK SİTENİZ...
  M. Temel Kavramlar
 
 

A. SAYI

1. Rakam

Sayıları yazmaya yarayan sembollere rakam denir.

2. Sayı

Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.

Her rakam bir sayıdır. Fakat bazı sayılar rakam değildir.

B. SAYI KÜMELERİ

1. Sayma Sayıları

{1, 2, 3, 4, ... , n , ...} kümesinin her bir elemanına sayma sayısı denir.

2. Doğal Sayılar

IN ={0, 1, 2, 3, 4, ... , n , ...} kümesinin her bir elemanına doğal sayı denir.

3. Pozitif Doğal Sayılar

IN+ = {1, 2, 3, 4, ... , n , ...} kümesinin her bir elemanına pozitif doğal sayı denir.

Pozitif doğal sayılar kümesi, sayma sayıları kümesine eşittir.

4. Tam Sayılar

Z = {... , – n , ... – 3, – 2, – 1, 0, 1, 2, 3, ... , n , ...} kümesinin her bir elemanına tam sayı denir.

Tam sayılar kümesi; negatif tam sayılar kümesi : Z , pozitif tam sayılar kümesi : Z+ ve sıfırı eleman kabul eden : {0} kümenin birleşim kümesidir.

Buna göre, Z = Z È Z+ È {0} dır.

5. Rasyonal Sayılar

a ve b birer tam sayı ve b ¹ 0 olmak koşuluyla biçiminde yazılabilen sayılara rasyonel sayılar denir.

Q = { : a, b Î Z ve b ¹ 0} biçiminde gösterilir.

6. İrrasyonel Sayılar

Virgülden sonraki kısmı tahmin edilemeyen sayılara irrasyonel sayılar denir.

Qı = { biçiminde yazılamayan sayılar: a, b Î Z ve b ¹ 0} biçiminde gösterilir.

Hem rasyonel hem de irrasyonel olan bir sayı yoktur.

sayıları birer irrasyonel sayıdır.

7. Reel (Gerçel) Sayılar

Rasyonel sayılar kümesiyle irrasyonel sayılar kü-mesinin birleşimi olan kümeye reel (gerçel) sayılar kümesi denir.

IR = Q È Qı biçiminde gösterilir.

8. Karmaşık (Kompleks) Sayılar

C| = {a + bi | a, b Î IR ve i =Ö-1 } kümesinin her bir elemanına karmaşık sayı denir.

C. SAYI ÇEŞİTLERİ

1. Çift Sayı

n Î Z olmak koşuluyla 2n ifadesi ile belirtilen tam sayılara çift sayı denir.

Ç = {... , – 2n , ... , – 4, – 2, 0, 2, 4, ... , 2n , ...} 

biçiminde gösterilir.

2. Tek Sayı

n Î Z olmak koşuluyla 2n + 1 ifadesi ile belirtilen tam sayılara tek sayı denir.

T = {... , – (2n – 1), ... , – 3, – 1, 1, 3, ... , (2n – 1), ...} biçiminde gösterilir.

T : Tek sayı

Ç : Çift sayıyı göstersin.

T ± T = Ç

T ± Ç = T

Ç ± T = T

Ç ± Ç = Ç

T . T = T

T . Ç = Ç

Ç . T = Ç

Ç . Ç = Ç

T ± T = Ç

T ± Ç = T

Ç ± T = T

Ç ± Ç = Ç

 

Bölme işlemi için yukarıdaki biçimde bir genelleme yapılamaz.
  • Tek sayılar ve çift sayılar tam sayılardan oluşur.
  • Hem tek hem de çift olan bir sayı yoktur.
  • Sıfır (0) çift sayıdır.

3. Pozitif Sayılar, Negatif Sayılar

Sıfırdan büyük her reel (gerçel) sayıya pozitif sayı, sıfırdan küçük her reel (gerçel) sayıya negatif sayı denir.

Ü  a < b < 0 < c < d olmak üzere,

  • a, b negatif sayılardır.
  • c, d pozitif sayılardır.
  • İki pozitif sayının toplamı pozitiftir. (c + d > 0)
  • İki negatif sayının toplamı negatiftir. (a + b < 0)
  • Çıkarma işleminde eksilen çıkandan büyük ise sonuç (fark) pozitif, eksilen    çıkandan küçük ise fark negatif olur. 
  • m – n ifadesinde m eksilen, n çıkandır.
  • Zıt işaretli iki sayıyı toplamak için; işaretine bakılmaksızın büyük sayıdan küçük sayı çıkarılır ve büyük sayının işareti sonuca verilir.
  • Aynı işaretli iki sayının çarpımı (ya da bölümü) pozitiftir.
  • Zıt işaretli iki sayının toplamı; negatif, pozitif veya sıfırdır.
  • Zıt işaretli iki sayının çarpımı (ya da bölümü) negatiftir.
  • Pozitif sayının bütün kuvvetleri pozitiftir.
  • Negatif sayının tek kuvvetleri negatif, çift kuvvetleri pozitiftir.

4. Asal Sayı

Kendisinden ve 1 den başka pozitif tam sayılara tam bölünmeyen 1 den büyük doğal sayılara asal sayı denir.

2, 3, 5, 7, 11, 13, 17, 19, 23 sayıları birer asal sayıdır.

  •  En küçük asal sayı 2 dir. 2 den başka çift asal sayı yoktur.
  •  Asal sayıların çarpımı asal değildir.

5. Aralarında Asal

En az biri sıfırdan farklı en az iki , ortak bölenlerin eb büyüğü 1 olan tam sayılara aralarında asal sayılar denir.

a ile b aralarında asal ise, oranı en sade biçimdedir.

D. ARDIŞIK SAYILAR

Belirli bir kurala göre art arda gelen sayı dizilerine ardışık sayılar denir.

Ü  n bir tam sayı olmak üzere,

  • Ardışık dört tam sayı sırasıyla;

    n, n + 1, n + 2, n + 3 tür.

  • Ardışık dört çift sayı sırasıyla;

    2n, 2n + 2, 2n + 4, 2n + 6 dır.

  •  Ardışık dört tek sayı sırasıyla;

    2n + 1, 2n + 3, 2n + 5, 2n + 7 dir.

  • Üçün katı olan ardışık dört tam sayı sırasıyla;

    3n, 3n + 3, 3n + 6, 3n + 9 dur.

Ardışık Sayıların Toplamı

Ü  n bir sayma sayısı olmak üzere,

  • Ardışık sayma sayılarının toplamı

               

  • Ardışık çift doğal sayıların toplamı

    2 + 4 + 6 + ... + (2n) = n(n + 1)

  • Ardışık tek doğal sayıların toplamı

    1 + 3 + 5 + ... + (2n – 1) = n2

  • Artış miktarı eşit olan ardışık tam sayıların toplamı

r : İlk terim

n : Son terim

x : Artış miktarı olmak üzere,

Ardışık sayıların toplamı, sayı adedine bölünürse ortanca terim bulunur. Eğer sayı adedi çift ise, ortanca terim sayı dizisine ait değildir.
 
 
   
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol